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Problem 1: [27 Marks] 
1-1. Let X =/= 0. Give the definition of the following concepts: 
1-1-1. A a-algebra on X and a a-algebra generated by a family C of subsets of X. 
1-1-2. A Borel a-algebra on X. 
1-1-3. A measurable space on X. 
1-1-4. A measure on X. 
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1-1-5. A measure space on X. [1] 
1-2. Let EC JR a non-empty set. Show that F = {0, E, Ee, JR} is the a-algebra of subsets of JR generated 
by {E}. [9] 
1-3. Let X = {l, 2, 3, 4} and consider C = { {1}, {2, 3}} C P(X). Determine a(C) the a-algebra generated 
~c. 

Problem 2: [35 Marks] 
Let (X, 11 · 11) be a normed space. 
2-1. Assume that X is a Banach space. 
Show that any absolutely summable series is summable. [6] 
2-2. Now we assume that X is a normed space in which any absolutely summable series is summable. 
2-2-1. Let {xn} be a Cauchy sequence in X. Show that if {xn} has a convergent subsequence {xnk}, {xn} 
converges to the same limit. [6] 
2-2-2. Show that we can construct a subsequence {x'f'(n)} such that [6] 

1 
Vk EN, llx'f'(k) - x'f'(k-1)11 :S 2k-l 

and show that 
n 

X'f'(n) = I)x'f'(k) - X'f'(k-1)) + X'f'(O), for any n 2: l. 
k=l 

2-2-3. Deduce from question 2-2-2 that the sequence { X<p(n)} converges. 
2-2-4. Conclude that {xn} converges and therefore Xis a Banach space. 
2-3. What is the general rule that you can establish from the main results obtained above. 

Problem 3: [38 Marks] 
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3-1. Consider (X, II· lloo,i), where X = C1[0, 1] and llflloo,1 = sup lf(x)I + sup IJ'(x)I and also consider 
xE[O,l] xE[O,l] 

(Y, II· lloo), where Y = C[0, 1]. 
3-1-1. Show that T = d~: X--+ Y is a bounded linear operator. [7] 

3-1-2. Show that T = ddx: D(T) £; Y--+ Y is an unbounded linear operator, where D(T) = C1[0, 1]. [10] 
(Hint: use un(x) = sin(mrx)). 

3-2. We recall that /l,2 or /l,2 sometimes denoted /l,2 (N0 ) is the space of sequences defined by 
l 

e' - { X - ( Xn)neo' t, lxn I' <c,o} , No - Nu {O}' and llxll,, - (t, Ix.I' r 
Show that the following operators are linear and continuous and compute their norms. 
3-2-1. T1: /l,2 --+ /l,2 : T1 ((xn)n2'.0) = (Xn+1)n2'.0· 
3-2-2. T2: L2 ([0, 1])--+ C: T2 (!) = f0

1 x2 f(x)dx, where: 
1 

L2 ([0, 1]) = {!: [0, 1]--+ JR: f0
1 lf(x)l2dx < oo} and IIJIIL2 = (f0

1 
lf(x)l2dx) 

2
. 

God bless you ! ! ! 
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