

Faculty of Health, Natural Resources and Applied Sciences

School of Natural and Applied Sciences

Department of Biology, Chemistry and Physics

13 Jackson Kaujeua Street T: +264 61 207 2012
Private Bag 13388 F: +264 61 207 9012
Windhoek E: dbcp@nust.na
NAMIBIA W: www.nust.na

QUALIFICATION: BACHELOR OF SCIENCE					
QUALIFICATION CODE: 07BOSC	LEVEL: 6				
COURSE: INORGANIC CHEMISTRY	COURSE CODE: ICH602S				
DATE: NOVEMBER 2024	SESSION: 1				
DURATION: 3 HOURS	MARKS: 100				

FIRST OPPORTUNITY: QUESTION PAPER

EXAMINER:

Dr Euodia Hess

MODERATOR:

Prof Habauka Kwaambwa

INSTRUCTIONS

- 1. Answer all questions on the separate answer sheet.
- 2. Please write neatly and legibly.
- 3. Do not use the left side margin of the exam paper. This must be allowed for the examiner.
- 4. No books, notes and other additional aids are allowed.
- 5. Mark all answers clearly with their respective question numbers.

PERMISSIBLE MATERIALS:

1. Non-Programmable Calculator

ATTACHMENTS

- 1. List of useful constants
- 2. Periodic Table

This paper consists of 7 pages including this front page

QUESTION 1:

The	re a	re 20 multiple choice questions in this section. Each question carries 2 marks.
1.1	Hov	w many sigma (σ) bonds and pi (π) bonds are in carbon monoxide?
		Three σ , zero π .
		Two σ , one π .
	C)	One σ , two π .
	D)	None of the above.
1.2	Wh	at is the hybridization of the central nitrogen atom in N₂O?
	A)	sp ²
	B)	sp
	C)	sp ³
	D)	sp³d
1.3	Wh	ich of the following does <u>not</u> contain at least one pi bond?
	A)	CO
	B)	H_2N
	C)	C₃H ₈
	D)	C_2H_2
1.4		at is the hybridization of the central atom in a molecule with a tetrahedral molecular
		ometry?
		sp ² sp ³
		sp ⁴
1 5	D)	spector is the molecular geometry around a central atom that is sp^2 hybridized, has three sigma
1.5		nds, and one pi bond
		Trigonal bipyramidal
		Tetrahedral
	C)	Square planar
	D)	Trigonal-planar
1.6	Ato	mic orbitals combine most effectively to form molecular orbitals when
	A)	The atomic orbitals have similar energies.
	B)	Only d-orbitals are used in bonding.
	C)	Atoms have an equal number of valence electrons
	D)	Electrons in the orbitals have the same spin.
1.7	All	of the following molecules or ions can act as polydentate ligands EXCEPT
	A)	acetylacetate ion; CH₃COCHCOCH₃⁻
	B)	oxalate ion; $C_2O_4^{2-}$
	C)	ethylenediamine; H ₂ NCH ₂ CH ₂ NH ₂
	D)	dimethylamine; (CH ₃) ₂ NH ₂
1.8		vhich of the following complexes does the transition metal have a d ⁸ configuration?
		$Cu(H_2O)_6^{2+}$
	B)	PtCl ₄ ²⁻

C) $Fe(CN)_6^{3-}$

- D) Ni(CO)₄
- 1.9 How many d electrons are present on the metal ion in the complex ion $CoCl_6^{3-}$?
 - A) 8
 - B) 6
 - C) 10
 - D) 7
- 1.10 Which of the following will not act as a ligand to a transition metal cation?
 - A) CN-
 - B) H₃O⁺
 - C) O₂
 - D) PH₃
- 1.11 What is the oxidation state of molybdenum in [Mo(H₂O)₅OH]Cl₂?
 - A) +3
 - B) +2
 - C) +6
 - D) +4
- 1.12 In which of the following complexes does the transition metal have a d8 configuration?
 - A) PtCl₄²⁻
 - B) $Cu(H_2O)_6^{2+}$
 - C) $Fe(CN)_6^{3-}$
 - D) Ni(CO)₄
- 1.13 What is the name of the compound having the formula K₂[PtCl₄]?
 - A) Potassium tetrachloroplatinate(II)
 - B) Potassium chloroplatinate(II)
 - C) Dipotassium tetrachloroplatnum(II)
 - D) Potassium chloroplatinate(IV)
- 1.14 What is the name of the compound having the formula [Cr(en)2(H2O)2]SO4?
 - A) Dihydroxydiethlyenediamminechromate(II) sulfate
 - B) diaguabis(ethylenediamine)sulfatochromate(IV)
 - C) Diaquabis(ethylenediamine)chromium(II) sulfate
 - D) Diaguabis(ethylenediamine)sulfatochromium(II)
- 1.15 Below is a list of formulas for complex compounds; each is matched with its name.

One formula/name combination contains an error. Which one?

- A) [Co(en)₂Br₂]Br/dibromobis(ethylenediamine)cobalt(III) bromide
- B) [Fe(NH₃)₅(OH₂)]Cl₃/pentaammineaquairon(III) chloride
- C) [Cr(NH₃)₃(OH)₃] / triamminetrihydroxochromate(III)
- D) [Ni(en)₃](NO₃)₂ / tris(ethylenediamine)nickel(II) nitrate
- 1.16 As pure molecular solids, which of the following exhibits dipole-dipole intermolecular forces: PH₃,

SO₃, HCl, and CO₂?

- A) HCl only
- B) SO₃ and HCl
- C) SO₃ and CO₂
- D) PH₃ and HCl

- 1.17 Which of the following molecules is expected to form hydrogen bonds in the pure liquid or solid phase: ethanol (CH₃CH₂OH), acetic acid (CH₃CO₂H), acetaldehyde (CH₃CHO), and dimethyl ether (CH₃OCH₃)?
 - A) ethanol and dimethyl ether
 - B) acetic acid and acetaldehyde
 - C) dimethyl ether and acetic acid
 - D) ethanol and acetic acid
- 1.18 In a water molecule forms a hydrogen bond with another water molecule, which atoms are involved in the interaction?
 - A) An oxygen and a hydrogen from the same molecule
 - B) An oxygen from one molecule and an oxygen from the other molecule
 - C) A hydrogen from one molecule and a hydrogen from the other molecule
 - D) A hydrogen from one molecule and an oxygen from the other molecule
- 1.19 Nickel has a face-centered cubic cell, and its density is 8.90 g/cm³. What is the radius (in pm) of a nickel atom?
 - A) 125 pm
 - B) 225 pm
 - C) 88.2 pm
 - D) 62 pm
- 1.20 Rhodium crystallizes in a face-centered cubic lattice with an edge length of 380.1 pm. What is the density of rhodium?
 - A) 12.4 g/cm³
 - B) 13.4 g/cm^3
 - C) 22.4 g/cm³
 - D) 32.4 g/cm³

SECTION B: SHORT/LONG ANSWER QUESTIONS

[60 MARKS]

There are THREE questions in this section. Please answer ALL of the questions in this section. Show clearly, where necessary, how you arrive at the answer as all working will carry marks.

QUESTION 2:	[20]
2.1 The edge length of NaCl unit cell is 564 pm. What is the density of NaCl in g/cm ³ ?	(10)
2.2 Redraw the table below and match the correct examples to its respective type of crystal.	
Examples: NaCl; C (diamond); Sucrose; Fe; & CaF ₂	(10)

Type of Crystal	Example	
	NaCl	
	C (diamond)	
	Sucrose	
	Fe	
	CaF ₂	

QUESTION 3:	[20]
3.1 Show if the following compounds obeys the 18 electron rule or not:	(12)
(a) Mn(CO)₅CH₃	
(b) HMn(CO)₅	
(c) $Cr(C_6H_6)_2$	

(d) [Fe(CO) ₄] ²⁻	
 3.2 What hapticities are possible for the interaction of each of the following ligands with a d-block metal atom such as cobalt? a) C₂H₄ b) Cyclopentadienyl c) C₆H₆. d) cyclooctadiene 	single (8)
QUESTION 4:	[20]
 4.1 Use the VSEPR model to predict the electron and molecular geometry of the following, molecules & ions: a) AsH₃ b) OF₂ c) AlCl₄⁻ 	(10)
d) I ₃ - e) C ₂ H ₄	
 4.2 The N²+ ion can be prepared by bombarding the N₂ molecules with fast moving electron Predict the following properties of N²+ molecule: a) Using molecular orbital (MO) theory, the electron configuration. b) Bond order c) Magnetic properties (paramagnetic or diamagnetic) d) Compared to N²+ molecule, is the bond order & magnetic properties the same as N molecule? 	(4) (2) (2)

END OF QUESTION PAPER

5

LIST OF USEFUL CONSTANTS:

Gas constant, R = $8.3145 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1} = 0.083145 \text{ dm}^3 \cdot \text{bar} \cdot \text{mol}^{-1} \cdot \text{K}^{-1} = 0.08206 \text{ L atm mol}^{-1} \cdot \text{K}^{-1} = 1.008206 \text{ L atm mol}^{-1} \cdot \text{L atm$

PERIODIC TABLE OF THE ELEMENTS

1																ì	18
H 1.00794	2											13	14	15	16	17	He 4.00260
3	4											5	6	7	8	9	10
Li	Be											В	C	N	O	F	Ne
6.941	9.01218											10.81	12.011	14.0067	15.9994	18.9984	20.179
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	P	S	Cl	Ar
22.9898		3	4	5	6	7	8	9	10	11	12	26.9815	28.0855	30.9738	32.06	35.453	39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.0983	40.08	44.9559	47.88	50.9415	51.996	54.9380	55.847	58.9332	58.69	63.546	65.38	69.72	72.59	74.9216	78.96	79.904	83.8
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
85.4678	87.62	88.9059	91.22	92.9064	95.94	(98)	101.07	102.906	106.42	107.868	112.41	114.82	118.69	121.75	127.6	126.9	131.29
55	56	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
132.905	137.33	174.967	178.49	180.948	183.85	186.207	190.2	192.22	195.08	196.967		204.383	207.2	208.908	(209)	(210)	(222)
87	88	103	104	105	106	107	108	109	110	111	112		114		116		118
Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub		Uuq		Uuh	1	Uuo
(223)	226.025	(260)	(261)	(262)	(263)	(264)	(265)	(268)	(269)	(272)	(269)						

525			3.99				
T	-	-	AL	-	_	: 4	96.

:	57	58	59	60	61	62	63	64	65	66	67	68	69	70
ı	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb
	138.906	140.12	140.908	144.24	(145)	150.36	151.96	157.25	158.925	162.50	161.930	167.26	166.934	173.04

Actinides:

89	90	91	92	93	94	95	96	97	98	99	100	101	102
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
227.028	232.038	231.036	238.029	237.048	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)