

OF SCIENCE AND TECHNOLOGY

Faculty of Computing and Informatics

Department of Computer Science

QUALIFICATION: BACHELOR OF COMPUTER SCIENCE	IN CYBER SECURITY
BACHELOR OF COMPTER SCIENCE	
QUALIFICATION CODE: 07BCCS; 07BACS; 07BCMS	LEVEL: 7
COURSE: COMMUNICATION NETWORKS	COURSE CODE: CMN620S
DATE: JANUARY 2024	SESSION: PAPER 2
DURATION: 2 HOURS 30 MINUTES	MARKS: 70

SECOND OPPORT	JNITY / SUPPLEMENTARY EXAMINATION QUESTION PAPER
EXAMINER(S)	MR. NASIMANE EKANDJO MS. LOINI IIYAMBO
MODERATOR:	MR. EDWARD NEPOLO

THIS QUESTION PAPER CONSISTS OF 5 PAGES

(Excluding this front page)

INSTRUCTIONS

- 1. Answer ALL the questions.
- 2. Write clearly and neatly.
- 3. Number the answers clearly.
- 4. When answering questions you should be guided by the allocation of marks. Do not give too few or too many facts in your answers.

PERMISSIBLE MATERIALS

1. Non-programmable calculator.

Indicate whether the following statements are true or false.

1.1 An IP address 172.30.0.1 can be issued to a LAN because it is a private IP address.

[6]

- 1.2 The TCP header contains fewer fields than the UDP header.
- 1.3 Routers in an AS that have the responsibility of routing packets to destinations outside the AS are called gateway routers.
- 1.4 With link-state routing protocol, the devices in the network need to know all other devices and not only the neighbours.
- 1.5 A control plane in network layer is responsible for moving packets from source to destination. It also determines how a datagram arriving on a router input port is forwarded to router output port.
- 1.6 TCP is more preferable for voice circuit.

Question 2

Choose the correct answer from the multiple choice questions below: [6]

- 2.1 Which OSI layer does IP rely to determine whether packets has been lost and to request for retransmission?
 - a) Application
 - b) Transport
 - c) Network
 - d) Physical
- 2.2 You are connecting two switches together. Which type of cable should you use?
 - a) Roll over
 - b) Coaxial
 - c) Crossover
 - d) Straight-through
- 2.3 Which of the following will be needed by a PC in order to send a packet to a destination outside its own subnet?
 - a) VLAN
 - b) ARP
 - c) Default gateway
 - d) Switch

- 2.4 Which statement best describes the purpose of a routing protocol?
 - It is used to build and maintain ARP tables. a)
 - b) It provides a method for segmentation and reassembling data packets.
 - c) It allows an Administrator to devise an addressing scheme for the network.
 - It allows a router to share information about known networks with other d) routers.
- 2.5 Which of the following is correct regarding class B address of IP address?
 - a) Network bits = 18; Host bits = 14
 - b) Network bits = 12; Host bits = 14
 - Network bits = 17; Host bits = 16 c)
 - d) Network bits = 14; Host bits = 16
- 2.6 Which of the following command will save the router's configurations to NVRAM?
 - a) Router#copy run start
 - b) Router#copy start run
 - c) Router#save start run
 - d) Router#save run start

3.1	Explain the difference between SMTP protocol and IMAP protocol.	[4]
3.2	Give any an example of User Agent of an email.	[1]

Question 4

4.1	Explain the difference between inter-AS routing and intra-AS routing as a	pproaches
	to scalable routing.	[4]
4.2	Give an example of a routing protocol that supports inter-AS routing.	[1]

- 5.1 Explain why the distance vector algorithm is said to be distributed, iterative and asynchronous. [3]
- 5.2 Explain what happens when the link-cost changes to a low or high value. [2]

Question 6

When developers develop applications, they choose one of the available transport-layer protocols. They (developers) make a choice depedning on the services provided by the available transport-layer protocol(s). Mention and expalin any three services that a transport-layer protocol can offer to applications invoking it. [6]

Question 7

7.1	Differentiate between a static route and a default route.	[2]
-----	---	-----

7.2 Below, is an example of a configured route. Describe what the configuration does. [2]

R1(config) # ip route 192.168.1.0 255.255.255.0 10.1.1.2

Question 8

Consider the figure below that shows the output that results from the show ip route command and answer the questions that follow:

```
Router#show ip route
Gateway of last resort is not set
```

Line 1)	1) 1.0.0.0/32 is subnetted, 1 subnets				
Line 2)) C 1.1.1.1 is directly connected, Loopback0				
Line 3)	C 172.20.7.125/27 is directly connected				
Line 4)	R	2.2.2.2 [120/12] via 10.12.12.2, 00:00:06, Fa0/0			
Line 5)		10.0.0.0/8 is variably subnetted, 2 subnets, 2 masks			
Line 6)	С	10.12.12.0/24 is directly connected, Fa0/0			
Line 7)	\mathbf{L}	10.12.12.1/32 is directly connected, Fa0/0			
Line 8)	0	2.2.2.2 [110/2] via 192.168.23.2, 00:02:47, Fa0/0			

8.1 Through which routing protocol does the address in line 8 is learned. [1]

8.2 What is the network number where the IP address in line 3 belongs?. [2]

Consider the figure below to answer the questions that follow:

9.1 A host in VLAN 10 within switct_1 need to communicate to a host in VLAN 10 within switch_2. Explain how the switches have to be configured for the communication to take place. [2]

9.2	What is mean by frame tagging?	[2]
-----	--------------------------------	-----

- 9.3 What is the purpose of IEEE 802.1q standard in a switched network? [2]
- 9.4 Name the two types of frame tagging methods (also known as frame encapsulation protocols.). [2]

Question 10

Given the IP Addresses below, provide the network number, the broadcast address and the equivalent subnet mask.

10.1 172.17.222.222 /17

Network number:	 [2]
Broadcast Address:	 [1]

10.2 192.168.177.77 /27

Network number:	[2]	
Broadcast Address:	[1]	

As a Network Administrator of a company, you are given a class B IP address block: 172.31.0.0 /17

Utulising CIDR, calculate the subnets that will be assigned to each department of the company. You are informed that each department requires 1200 users:

As per your subnetting, clearly indicate:

10.1 Number of subnets that will be created. [2]

10.2 Number of usable hosts per subnet.

[2]

10.3 Re-draw the table below and write down the information as per your subnetting. [12]

	Subnet	Host Range	Broadcast Address	Subnet Mask
Subnet 1				
Subnet 2			8	

Marks distribution: [2 marks for each network address]

[2 marks for each host range]

[1 mark for each broadcast address]

[1 mark for each subnet mask]

Total = 12 marks

End of Paper