NAMIBIA UNIVERSITY OF SCIENCE AND TECHNOLOGY

Faculty of Health, Natural **Resources and Applied** Sciences

School of Natural and Applied Sciences

Department of Mathematics, Statistics and Actuarial Science 13 Jackson Kaujeua Street T: +264 61 207 2913 Private Bag 13388 Windhoek NAMIBIA

E: msas@nust.na W: www.nust.na

QUALIFICATION : BACHELOR OF ECONOMICS (07BECO)				
QUALIFICATION CODE: 07BECO	LEVEL: 5			
COURSE: MATHEMATICS FOR ECONOMICS 1B	COURSE CODE: MFE512S			
DATE: JANUARY 2024	SESSION: 2			
DURATION: 3 HOURS	MARKS: 100			

SECOND OPPORTUNITY: QUESTION PAPER

EXAMINER: Mrs. Hilma Yvonne Nkalle; Mr. Tobias Kaenandunge; Mr. Ilenikemanya Ndadi

MODERATOR: Ms. Kornelia David

INSTRUCTIONS:

- 1. Answer all questions on the separate answer sheet.
- 2. Please write neatly and legibly.
- 3. Do not use the left side margin of the exam paper. This must be allowed for the examiner.
- 4. No books, notes and other additional aids are allowed.
- 5. Mark all answers clearly with their respective question numbers.

PERMISSIBLE MATERIALS:

1. Non-Programmable Calculator

This paper consists of 5 pages including this front page

Question 1 (Multiple choice questions, 2 marks each) [20 Marks]

1.1 Which of the following matrices is most likely to have an inverse?

- A) A square matrix with determinant equal to 0.
- B) A square matrix with all zero entries.
- C) A square matrix with determinant not equal to 0.
- D) A non-square matrix with all nonzero entries.

1.2 Given the matrix equation AX=B, where A is a square matrix and X,B are column matrices, how can the solution for X be obtained?

A) By dividing B by A.

B) By finding the inverse of A and multiplying it with B

C) By finding the determinant of A and dividing it into B.

D) By subtracting B from A.

1.3 If a square matrix A has an inverse, which of the following statements is true.

A) The determinant of A is 1.

B) The determinant of A is 0.

C) The product of A and its inverse is the identity matrix.

D) The transpose of A is its inverse.

1.4 Supposed you have a system of linear equations represented by the matrix equation AX=B, where A is a square matrix. Which of the following is the correct expression to solve for X?

- A) X=AB
- B) X=A⁻¹B
- C) X=BA
- D) X=B⁻¹A

1.5 If a matrix A is given and it has an inverse, which of the following is a correct way to find the inverse?

A) Compute the transpose of A.

- B) Divide each entry of A by its determinant.
- C) Swap rows and columns of A.
- D) Use Gaussian elimination to row-reduce A to the identity matrix.

Course Name (MFE512S)

2nd Opportunity November 2023

1.6 For a 2x2 matrix A with a nonzero determinant, what is the formula to calculate its inverse?

- A) $A^{-1} = 1/det(A) \times adj(A)$
- $B) A^{-1} = 1/trace(A) \times adj(A)$
- C) $A^{-1} = 1/det(A) \times A$

D)
$$A^{-1} = A/\det(A)$$

1.7 If a square matrix A is invertible, which of the equations is true?

A) $A \times A^{-1} = I$, where I is the identity matrix.

- B) $A + A^{-1} = I$
- C) $A \times A^{-1} = 0$

D)
$$A - A^{-1} = I$$

1.8 What is the minimum requirement for a matrix to have an inverse?

- A) It must be a square matrix.
- B) It must have all positive entries.
- C) It must be a non-square matrix.
- D) It must have a determinant of 1.

1.9 A square matrix A is a singular (non-invertible), which of the following is true?

- A) The matrix A is diagonal.
- B) The matrix has no solution.
- C) The matrix A has an infinite number of solution.
- D) The determinant of matrix A is zero.

1.10 When solving for the inverse of a matrix A, why is it important to check whether the determinant of A is nonzero?

- A) If the determinant is nonzero, the inverse does not exist.
- B) If the determinant is zero, the inverse does not exist.
- C) The determinant affects the size of the inverse matrix.
- D) The determinant determines the number of the rows.

Course Name (MFE512S)

2nd Opportunity November 2023

3

Question 2 (true/false questions, 2 marks each) [10 marks]

2.1 A 4x3 matrix has three rows and four columns.

- 2.2 Every diagonal matrix is an upper triangular matrix.
- 2.3 A zero matrix is a lower triangular matrix provided it is a square matrix.
- 2.4 A square matrix is a matrix whose entries are square numbers.
- 2.5 In a matrix, the entry a_{23} and the entry a_{32} represent the same.

Question 3 [2 Marks]

Give an example of a 3x3 lower triangular matrix.

Question 4 [12 Marks]

A company produces three types of products A, B and C. The total annual sales of these products for the years 1985 and 1986 on the four regions is given below.

For the year 1985:

Products	Khomas region	Omusati region	Oshana region	Ohangwena region
A	15000	8000	6000	12000
В	5000	24000	7000	8000
С	8000	4000	31000	6000

For the year 1986:

Products	Khomas region	Omusati region	Oshana region	Ohangwena region
А	17000	10000	5000	7000
В	5000	22000	11000	4000
С	13000	6000	39000	5000

Find the total sales of the three products for two years.

Question 5 [13 Marks]

Find the inverse of the following matrix, $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 2 & 6 \end{bmatrix}$.

$$\begin{bmatrix} 7 & 8 & 9 \end{bmatrix}$$

Course Name (MFE512S)

2nd Opportunity November 2023

Question 6 [10 Marks]

Use Gaussian elimination method to find the solution (s) of the following system of linear equations.

4y + 8z = 12

ж ж. к

$$x - y + 3z = -1$$

$$3x - 2y + 5z = 6$$

Question 7 [16 Marks]

Given the system of linear equations

$$Max P = 6x + 8y$$

Subject to: $30x + 20 y \le 300$

 $5x + 10y \le 110$

 $X; y \ge 0$, find the unknown variables.

Hint: Introduce slack variables; Formulate the initial simplex tableau; Derive the optimum tableau; Interpret the final tableau.

Question 8 [7; 5; 5 Marks]

- (a) Given A = $\begin{bmatrix} 2 & -1 & 9 \\ 6 & 4 & 3 \end{bmatrix}$, B = $\begin{bmatrix} 6 & 0 & 2 \\ 1 & 2 & 4 \end{bmatrix}$ find A+B. (b) BC = $\begin{bmatrix} 4 & 4 \\ -9 & 10 \end{bmatrix}$, Find (BC)².
- (c) Given the following matrices, $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$, $B = \begin{bmatrix} -1 & 1 \\ 0 & 1 \end{bmatrix}$ find AB.

End of 2nd opportunity Exam!

Course Name (MFE512S)

2nd Opportunity November 2023

5