ПAmIBIA UMIVERSITY

School of Natural and Applied Sciences

Department of Mathematics, Statistics and Actuarial Science

QUALIFICATIONS: BACHELOR of SCIENCE IN APPLIED MATHEMATICS AND STATISTICS AND BACHELOR of SCIENCE	
QUALIFICATION CODE: O7BSAM ,07BSOC	LEVEL: 6
COURSE: ORDINARY DIFFERENTIAL EQUATIONS	COURSE CODE: ODE602S
DATE: NOVEMBER 2023	SESSION: 1
DURATION: 3 HOURS	MARKS: 80

FIRST OPPORTUNITY: EXAMINATION QUESTION PAPER

EXAMINER: Prof Adetayo S. Eegunjobi

MODERATOR:
Prof Sunday A. Reju

INSTRUCTIONS

1. Answer any four questions on the separate answer sheet.
2. Please write neatly and legibly.
3. Do not use the left-side margin of the exam paper. This must be allowed for the examiner.
4. No books, notes and other additional aids are allowed.
5. Show all your working /calculation steps.

PERMISSIBLE MATERIALS

1. Non-Programmable Calculator

ATTACHMENTS

1. None

This paper consists of 3 pages including this front page

1. Solve the following initial value problems:
(a) $y^{\prime}(x)+\frac{4}{x} y(x)=6 x-5, \quad y(1)=1$, for $x>0$
(b) $y^{\prime}(x)+y(x) \tan x=e^{2 x} \cos x, \quad y(0)=2$
(c) Cobalt-60, a radioactive element employed in medical radiology, possesses a half-life of 5.3 years. Let's consider an initial cobalt- 60 sample weighing 100 grams.
i. Caculate the decay constant and derive an equation representing the quantity of the sample that will remian t years from now.
ii. What is the time required for 85% of the sample to undergo decay?
2. (a) Find the values of α such that $y(x)=e^{\alpha x}$ is a solution of

$$
y^{\prime \prime}(x)-y^{\prime}(x)-6 y(x)=0 .
$$

Determine if the solutions are linearly independent or not. Hence or otherwise, write the general solution.
(b) Given that

$$
a y^{\prime \prime}(x)+b y^{\prime}(x)+c y(x)=0
$$

i. Write down the auxiliary equation.
ii. If the roots of the auxiliary equation are complex and denoted by $m_{1}=\alpha+\beta i$ and $m_{2}=\alpha-\beta i$, show that the general solution is

$$
\begin{equation*}
y(x)=e^{\alpha x}(A \cos \beta x+B \sin \beta x) \tag{6}
\end{equation*}
$$

(c) Find the particular solution of the following differential equations, using undetermined coefficients

$$
\begin{equation*}
y^{\prime \prime}(x)-6 y^{\prime}(x)+8 y(x)=3 \cos x \tag{6}
\end{equation*}
$$

3. (a) Find the general solution of

$$
\begin{equation*}
0.5 y^{i v}(x)+y^{\prime \prime}(x)+0.5 y=0 \tag{6}
\end{equation*}
$$

(b) Find the general solution of

$$
\begin{equation*}
2 y^{\prime \prime \prime}(x)+6 y^{\prime \prime}(x)-8 y=0 \tag{6}
\end{equation*}
$$

(c) Find the general solution of

$$
18 x^{2} y^{\prime \prime}(x)+30 x y^{\prime}(x)+10 y(x)=0, \quad x>0
$$

4. (a) Use Laplace Transform to solve the differential equation:

$$
\begin{equation*}
y^{\prime \prime}(t)-4 y(t)=24 \cos 2 t, \quad y(0)=3, \quad y^{\prime}(0)=4 \tag{10}
\end{equation*}
$$

(b) Solve by using Laplace Transform the following simultaneous differential equations:

$$
\begin{equation*}
x^{\prime}(t)=x(t)-2 y(t), \quad \text { and } \quad y^{\prime}(t)=5 x(t)-y(t), \quad x(0)=-1, \quad y(0)=2 \tag{10}
\end{equation*}
$$

5. (a) Use Laplace transform to find the exact value of

$$
\begin{equation*}
\int_{0}^{\infty} \frac{\cos 6 t-\cos 4 t}{t} d t \tag{5}
\end{equation*}
$$

(b) Find the first five terms in the series solution of

$$
\begin{equation*}
y^{\prime}(x)+y(x)+x^{2} y(x)=\sin x, \quad \text { with } \quad y(0)=a \tag{5}
\end{equation*}
$$

(c) If $f(t)=e^{3 t}$ and $g(t)=e^{7 t}$
i. Find the convolution of $f(t) \circledast g(t)$
ii. Find $\mathcal{L}\{f(t) \circledast g(t)\}$

End of Exam!

