

NAMIBIA UNIVERSITY OF SCIENCE AND TECHNOLOGY

Faculty of Health, Natural **Resources and Applied** Sciences

School of Natural and Applied Sciences

Department of Mathematics. Statistics and Actuarial Science 13 Jackson Kaujeua Street T: +264 61 207 2913 Private Bag 13388 Windhoek NAMIBIA

E: msas@nust.na W: www.nust.na

QUALIFICATION : BACHELOR OF SCIENCE IN APPLIED MATHEMATICS AND STATIST		
QUALIFICATION CODE: 07BSAM; 07BSOC	LEVEL: 7	
COURSE: COMPLEX ANALYSIS	COURSE CODE: CAN702S	
DATE: JANUARY 2024	SESSION: 1	
DURATION: 3 HOURS	MARKS: 100	

SECOND OPPORTUNITY/SUPPLEMENTARY EXAMINATION: MEMORANDUM

EXAMINER: DR. NEGA CHERE

MODERATOR: PROF. FORTUNÉ MASSAMBA

INSTRUCTIONS:

- 1. Answer all questions on the separate answer sheet.
- 2. Please write neatly and legibly with black or blue ink pen.
- 3. Do not use the left side margin of the exam paper. This must be allowed for the examiner.
- 4. No books, notes and other additional aids are allowed.
- 5. Mark all answers clearly with their respective question numbers.

PERMISSIBLE MATERIALS:

1. Non-Programmable Calculator

ATTACHMENTS:

NONE

This paper consists of 2 pages including this front page.

1.	(a) Find the real and imiginary part of $\frac{z+2}{z-2}$.	(6)
	(b) Compute $\lim_{z \to 1+i} \frac{z^2 - 2iz + 1 - i}{z - 2 + i}$ if it exists.	(4)
2.	Let $z_1 = -1 - i$, $z_2 = 1 - i\sqrt{3}$. Then find the polar representation of $\frac{z_2}{z_1}$.	(10)
3.	Find the image of the disk $ z + 1 < 2$ under the transformation $w = (1 + 2i) z + 2 - i$.	(5)
4.	Show that $\lim_{z \to 0} \frac{z^2}{ z ^2}$ does not exist, $(z = x + iy)$.	(8)
5.	Let $f(z) = f(x+iy) = 3x^2 - 2xy + x - 3y^2 + 2y + i(-x^2 - 6xy - 2x + y^2 + y)$. Determine if f is analytic in \mathbb{C} or it is not analytic in \mathbb{C} .	(12)
6.	Show that $u(x, y) = y^3 - 4xy - 3x^2y$ is harmonic and find its harmonic conjugate $v(x, y)$ for which $f(z) = u(x, y) + iv(x, y)$ is analytic.	(15)
7.	Evaluate $\int_C (xy - iy^2) dz$ where $(z = x + iy)$ and C is the counter joining 0 to $1 + i$, $1 + i$ to i and i to $-1 - i$.	(20)
8.	Evaluate the follwoing integrals.	
	(a) $\int_C (\frac{z^2}{4-z^2}) dz$ where C is the circle $ z+1 = 2$ oriented positively.	(12)
	(b) $\int_C \frac{dz}{z^3(z+i)}$ where C is the circle $ z = \frac{1}{2}$ oriented positively.	(8)

÷

-

END OF SECOND OPPORTUNITY/SUPPLEMENTARY EXAMINATION QUESTION PAPER

٠