ПAMIBIA UTIVERSITY

School of Natural and Applied Sciences

Department of Mathematics, Statistics and Actuarial Science

QUALIFICATION: Bachelor of Science Honours in Applied Statistics	
QUALIFICATION CODE: 08BSHS	LEVEL: 8
COURSE CODE: MVA802S	COURSE NAME: MULTIVARIATE ANALYSIS
SESSION: JANUARY 2024	PAPER: THEORY
DURATION: 3 HOURS	MARKS: 100

SUPPLEMENTARY / SECOND OPPORTUNITY EXAMINATION QUESTION PAPER	
EXAMINER	Dr D. B. GEMECHU
MODERATOR:	Prof L. PAZVAKAWAMBWA

INSTRUCTIONS

1. There are 6 questions, answer ALL the questions by showing all the necessary steps.
2. Write clearly and neatly.
3. Number the answers clearly.
4. Round your answers to at least four decimal places, if applicable.

PERMISSIBLE MATERIALS

1. Nonprogrammable scientific calculators with no cover. THIS QUESTION PAPER CONSISTS OF 5 PAGES (Including this front page)

ATTACHMENTS
Two statistical distribution tables (z-and F-distribution tables)

Question 1 [15 Marks]

1.1. Briefly explain Principal components analysis (PCA) and state three assumptions of PCA
1.2. State three reason why multivariate approach to hypothesis testing instead of univariate approach in inference about multivariate mean vectors.
1.3. Briefly discuss a One-Sample Profile Analysis. Your answer should include (Definition of profile analysis, assumptions of the variable, hypothesis to be tested, the contrast matrix, the test statistics and the rejection rule).

Question 2 [10 Marks]

2. The following data represent measurements of blood glucose levels on three occasions $\left(y_{1}, y_{2}\right.$ and $\left.y_{3}\right)$ for 4 women patients who gave consent to participate on the study. The results obtained are listed below:

Individual	y_{1}	y_{2}	y_{3}
1	60	69	62
2	56	53	84
3	62	75	68
4	73	70	64

Then compute
2.1. the sample mean vector \bar{y}.
2.2. the sample variance-covariance matrix, S.
2.3. the total sample variance.

Question 3 [23 Marks]

3.1. Given that $y \sim N_{p}\left(\mu_{y}, \Sigma_{y}\right)$ a random variable z is defined as a linear combination of $y=$ $\left(y_{1}, y_{2}, \ldots, y_{p}\right)^{\prime}$ as $z_{i}=a_{1} y_{i 1}+a_{2} y_{i 2}+\cdots+a_{p} y_{i p}$, for $i=1,2, \ldots, n$, then show that $\bar{z}=\boldsymbol{a}^{\prime} \bar{y}$, where $\boldsymbol{a}^{\prime}=\left(a_{1} a_{2} \cdots a_{p}\right)$ and \bar{y} is the sample mean vector of the p -variables.
3.2. Suppose that test $1\left(x_{1}\right)$ and test $2\left(x_{2}\right)$ scores of MVA students that follow a bivariate normal distribution with parameters mean $\mu_{1}=70$ and $\mu_{2}=60$, the standard deviations $\sigma_{1}=$ 10 and $\sigma_{2}=15$, and $\rho=0.6$.
3.2.1. Express a given information in the form of matrix notation, thus what would be μ and Σ ?
3.2.2. If a student is selected randomly, then find the probability that
3.2.2.1. the score of a randomly selected student is above 75 on test 2 ?
3.2.2.2. the score of a randomly selected student is above 75 on test 2 given that the student scored 80 on Test 1.
3.2.2.3. the sum of the score of a randomly selected student on both tests is above 150. [3]
3.2.2.4. the students performance in test 1 is better than test 2.

Question 4 [20 Marks]

4. A medical researcher is interested in two particular fatty acids (A and B) found in human blood. Measurements (micrograms per gram) were taken on 16 new-born babies with Down's syndrome. The sample means were 70 and 50 for fatty acids A and B, respectively and the corresponding sample covariance matrix was

$$
S=\left(\begin{array}{cc}
100 & 80 \\
80 & 100
\end{array}\right)
$$

For non-down's syndrome new-born babies the expected fatty acid levels are 80 and 65 for A and B, respectively. Use the multivariate hypothesis test technique to assess whether the observed data for the Down's syndrome babies are consistent with the expected values for non-Down's syndrome babies. Your solution should include the following:
4.1. State the null and alternative hypothesis to be tested
4.2. State the test statistics to be used and its corresponding distribution
4.3. State the decision (rejection) rule and compute the tabulated value using an appropriate statistical table
4.4. Compute the test statistics and write up your decision and conclusion [6]
4.5. Construct a $95 \% T^{2}$ interval for $\mu_{1}-\mu_{2}$ [5]
4.6. Assuming that the purpose is to make only two confidence statements (i.e. $m=2$), construct a 95\% Bonferroni confidence interval for μ_{1}

Question 5[20 Marks]

5. Observations on two responses are collected for three treatments. The observation vectors $\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right]$ are

Treatment 1: $\left[\begin{array}{l}6 \\ 7\end{array}\right], \quad\left[\begin{array}{l}5 \\ 3\end{array}\right]$
Treatment 2: $\left[\begin{array}{l}3 \\ 3\end{array}\right],\left[\begin{array}{l}1 \\ 6\end{array}\right],\left[\begin{array}{l}2 \\ 3\end{array}\right]$
Treatment 3: $\left[\begin{array}{l}2 \\ 3\end{array}\right],\left[\begin{array}{l}5 \\ 1\end{array}\right],\left[\begin{array}{l}5 \\ 8\end{array}\right]$
5.1. Construct the one-way MANOVA table
5.2. Evaluate Wilks' lambda, $\Lambda_{\text {wilks }}$
5.3. Test for vector of treatment effe cts at 5% level of significance. Your answer should include specification of the null and alternative hypothesis.

Hint: Use the test statistics: $\left(\frac{N-g-1}{g-1}\right)\left(\frac{1-\sqrt{\Lambda_{\text {wilks }}}}{\sqrt{\Lambda_{\text {wilks }}}}\right) \sim \mathrm{F}_{2(\mathrm{~g}-1), 2(\mathrm{~N}-\mathrm{g}-1)}$

Question 6[12 Marks]

6. A marketing researcher conducted a study to evaluate the effect of advertisement on two different types of products. For this research, a random sample of eight ex-customers and eight customers were shown advertisements on both products and asked to rate them on the two variables (Ability to gain attention (y1) and Persuasiveness (purchase y 2)). The software output of the analysis of
the data is given in Tables 1-3. Your answer to each question below should include the hypothesis to be tested, test statics and p-value and conclusion.
6.1. Draw conclusion of the Box test for equality of covariance matrix using the 5% significance level.
6.2. Is there any significance interaction effects of customer status and type of product on the ratting?
6.3. Test if there is a significant of effects of customer status on the rating of the two variables.
6.4. Test if there is a significant of effects of product type on the rating of the two variables.

Table 1: Box's Test of Equality of Covariance Matrices ${ }^{\text {a }}$

Box's M	3.285
F	. 253
df1	9
df2	1650.212
Sig.	. 986
Tests the null hypothesis that the observed covariance matrices of the dependent variables are equal across groups.	
a. Design: Intercept + customersatus + productype + customersatus * producttype	

Table 2: Multivariate Tests ${ }^{\text {a }}$

Effect		Value	F	Hypoth esis df	Error df	Sig.	Partial Eta Squared
Intercept	Pillai's Trace	. 990	$565.442^{\text {b }}$	2.000	11.000	<. 001	. 990
	Wilks' Lambda	. 010	$565.442^{\text {b }}$	2.000	11.000	<. 001	. 990
	Hotelling's Trace	102.808	$565.442^{\text {b }}$	2.000	11.000	<. 001	. 990
	Roy's Largest Root	102.808	$565.442^{\text {b }}$	2.000	11.000	<. 001	. 990
customersat us	Pillai's Trace	. 925	$68.073^{\text {b }}$	2.000	11.000	<. 001	. 925
	Wilks' Lambda	. 075	$68.073^{\text {b }}$	2.000	11.000	<. 001	. 925
	Hotelling's Trace	12.377	$68.073^{\text {b }}$	2.000	11.000	<. 001	. 925
	Roy's Largest Root	12.377	$68.073^{\text {b }}$	2.000	11.000	<. 001	. 925
typeprodet	Pillai's Trace	. 746	$16.119^{\text {b }}$	2.000	11.000	<. 001	746
	Wilks' Lambda	. 254	16.119^{b}	2.000	11.000	<. 001	. 746
	Hotelling's Trace	2.931	16.119^{b}	2.000	11.000	<. 001	. 746
	Roy's Largest Root	2.931	$16.119^{\text {b }}$	2.000	11.000	<. 001	. 746
customersat us * producttype	Pillai's Trace	. 274	$2.073^{\text {b }}$	2.000	11.000	. 172	. 274
	Wilks' Lambda	. 726	$2.073^{\text {b }}$	2.000	11.000	. 172	. 274
	Hotelling's Trace	. 377	$2.073^{\text {b }}$	2.000	11.000	. 172	. 274
	Roy's Largest Root	. 377	$2.073^{\text {b }}$	2.000	11.000	. 172	. 274
a. Design: Intercept + customersatus + producttype + customersatus * producttype							
b. Exact statistic							

Table 3: Tests of Between-Subjects Effects

Source	Dependent Variable	Type III Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared
Corrected Model	Gain attention (y1)	$52.000^{\text {a }}$	3	17.333	26.000	<. 001	. 867
	Purchase (y2)	$60.688^{\text {b }}$	3	20.229	29.424	<. 001	. 880
Intercept	Gain attention (y1)	324.000	1	324.000	486.000	$<.001$. 976
	Purchase (y2)	410.063	1	410.063	596.455	<. 001	. 980
customersatus	Gain attention (y1)	36.000	1	36.000	54.000	<. 001	. 818
	Purchase (y2)	52.563	1	52.563	76.455	<. 001	. 864
producttype	Gain attention (y1)	16.000	1	16.000	24.000	$<.001$. 667
	Purchase (y2)	5.063	1	5.063	7.364	. 019	. 380
customersatus * producttype	Gain attention (y1)	. 000	1	. 000	. 000	1.000	. 000
	Purchase (y2)	3.063	1	3.063	4.455	. 056	. 271
Error	Gain attention (y1)	8.000	12	. 667			
	Purchase (y2)	8.250	12	. 688			
Total	Gain attention (y1)	384.000	16				
	Purchase (y2)	479.000	16				
Corrected Total	Gain attention (y1)	60.000	15				
	Purchase (y2)	68.938	15				
a. R Squared $=.867$ (Adjusted R Squared $=.833$)							
b. R Squared $=.880$ (Adjusted R Squared $=.850$)							

Table for $\alpha=.05$

