HAMIBIA UTIVERSITY

Faculty of Health, Natural Resources and Applied Sciences

School of Natural and Applied Sciences

Department of Biology,
Chemistry and Physics

QUALIFICATION : BACHELOR OF SCIENCE	
QUALIFICATION CODE: 07BOSC	LEVEL: 5
COURSE: GENERAL PHYSICS 1B	COURSE CODE: GNP502S
DATE: NOVEMBER 2023	SESSION: 1
DURATION: 3 HOURS	MARKS: 100

FIRST OPPORTUNITY: QUESTION PAPER

EXAMINER:	PROF SYLVANUS ONJEFU
	DR EMMANUEL EJEMBI
MODERATOR:	PROF DIPTI SAHU
INSTRUCTIONS:	

1. Answer all questions on the separate answer sheet.
2. Please write neatly and legibly.
3. Do not use the left-side margin of the exam paper. This must be allowed for the examiner.
4. No books, notes and other additional aids are allowed.
5. Mark all answers clearly with their respective question numbers.

PERMISSIBLE MATERIALS

1. Non-Programmable Calculator

ATTACHEMENTS

1. None

This paper consists of 6 pages including the front page

SECTION A

QUESTION 1

Suggested Question Types: Multiple Choice/Objectives

Each question in this section carries two marks

1.1 One of these is not a wind instrument.
a. clarinets
b. drums
c. trumpets
d. flutes
1.2 Sound wave below 20 Hz is called what?
a. ultrasonic wave
b. audible wave
c. infrasonic wave
d. critical wave
1.3 One of the following is not an example of electromagnetic waves.
a. beta
b. gamma
c. x rays
d. ultraviolet light
1.4 A beam of polarized light is one constrained to vibrate in a \qquad plane perpendicular to the beam.
a. multiple
b. triple
c. single
d. quadruplet
1.5 In which of the following is the speed of sound greatest?
a. air at $100^{\circ} \mathrm{C}$
b. water
c. wood
d. steel
1.6 The change of direction of wave front because of a change in the velocity of the wave in another medium is called what?
a. Polarization
b. interference
c. diffraction
d. refraction
1.7 \qquad is the unit of frequency.
a. decibel
b. meters
c. Hertz
d. seconds
1.8 Which of the following statements about images formed by a plane mirror is false? It is;
a. The same size as the object
b. virtual
c. enlarged
d. lateral inverted
1.9 The combination of two overlapping waves is called what?
a. aggregate
b. superposition
c. dispersion
d. wavelength
1.10 Suppose the real depth of a pond is 6 m and its apparent depth is 4.5 m . The refractive index of the water of the pond is given by?
a. 1.35
b. 1.36
c. 1.47
d. 1.33
1.11 A hunter at a distance x from a cliff fires a gun. He hears the echo from the cliff after 2.4 seconds. If the speed of sound in air is $340 \mathrm{~m} / \mathrm{s}$, determine x.
a. 408 m
b. 209 m
c. 100 m
d. 501 m

Questions 1.12 and 1.13 are based on the statement below:

The amplitude modulation (AM) radio band extends from $5.4 \times 10^{5} \mathrm{~Hz}$ to $1.7 \times 10^{6} \mathrm{~Hz}$. If the speed of light is $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$;
1.12 What is the longest wavelength in meters?
a. $1.8 \times 10^{2} \mathrm{~m}$
b. $5.6 \times 10^{2} \mathrm{~m}$
c. $6.5 \times 10^{3} \mathrm{~m}$
d. $0.9 \times 10^{3} \mathrm{~m}$
1.13 Determine the shortest wavelength.
a. $1.8 \times 10^{2} \mathrm{~m}$
b. $5.6 \times 10^{2} \mathrm{~m}$
c. $6.5 \times 10^{3} \mathrm{~m}$
d. $0.9 \times 10^{3} \mathrm{~m}$
1.14 \qquad image cannot be projected on a screen.
a. real
b. virtual
c. critical
d. principal
1.15 A light ray of wavelength 589 nm traveling through air strikes a smooth, flat slab of crown glass at an angle of 30° to the normal. Determine the angle of refraction.
a. 18.2^{0}
b. 20.1^{0}
c. 17.2^{0}
d. 19.2°
1.16 A type of aberration in which the wavelength is dependent on refraction is called what?
a. spherical aberration
b. chromatic aberration
c. cubical aberration
d. sita aberration
1.17 The combination of rays gives rise to \qquad .?
a. beam
b. radiation
c. particles
d. incident rays
1.18 Light reflecting off a flat mirror creates an image that appears to be \qquad the mirror.
a. infront
b. behind
c. lateral
d. tangential
1.19 Is a device that transforms energy into a beam of coherent monochromatic light.
a. lasers
b. slit order
c. path difference
d. diffraction gating
1.20 The diagram below shows a ray of light IK incident on plane mirror at K. Calculate the angle of deviation of the ray after reflection.

a. 35°
b. 70°
c. 55°
d. 90°

SECTION B

QUESTION 2

2.1 A plane progressive wave is represented by the equation, $y=0.3 \sin \left(200 \pi t-20 \pi \frac{x}{18}\right)$. Find the
2.1.1 Frequency of the wave.
2.1.2 Wavelength.
2.1.3 Its speed.
2.2 If the angle of incidence for light traveling from air to glass is 45° and the angle of refraction in glass is 28°, Evaluate the refractive index of glass with respect to air.

QUESTION 3

[14 MARKS]
3.1 If u is the object distance and v is the image distance, show that the magnification M is given by; $M=\frac{v}{u}=\frac{v}{f}-1$.
3.2 An object is 0.5 ft in front of a concave mirror, and the image is located 2.0 ft behind the mirror. Find the focal length and the radius of curvature of the mirror.
3.3 The velocity of light in air and glass are $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$ and $1.8 \times 10^{8} \mathrm{~m} / \mathrm{s}$ respectively. Calculate the sine of the angle of incidence that will produce and angle of refraction of 30° for a ray of light incident on glass.

QUESTION 4

4.1 Illustrate with the aid of a diagram destructive interference.
4.2 The distance between the two slits is 0.030 mm . The second-order bright fringe is measured on a viewing screen at an angle of 2.15° from the central maximum. Evaluate the wavelength of the light in nano meter

4.3 What is meant by 'a beam of polarized light?

4.4 With the aid of well labelled diagrams, illustrate the action of a Polaroid on beam of sunlight.
4.5 List three crystals that serve as light polarizing filters.

QUESTION 5

5.1 A train is moving toward an observer with a speed of $100 \mathrm{~m} / \mathrm{s}$. The whistle of the locomotive has a frequency of 400 Hz , and the speed of the sound is $1100 \mathrm{~m} / \mathrm{s}$. Find the frequency heard by the observer.
5.2 Define resonance.
5.3 A glass tube of 30 cm long contains water to a height of 20 cm . If a tuning fork of frequency 256 Hz is used to obtain the next position of resonance after the first when the water level is 25 cm below the open end, calculate the velocity of sound in the air.

