

FACULTY OF COMPUTING AND INFORMATICS

DEPARTMENT OF SOFTWARE ENGINEERING

QUALIFICATION: BACHELOR OF COMPUTER SCIE	NCE, BACHELOR OF COMPUTER		
SCIENCE IN CYBER SECURITY AND BACHELOR OF INFORMATICS			
QUALIFICATION CODE: 07BCMS, 07BCCY, LEVEL: 5			
07BAIT			
COURSE : DATA STRUCTURES AND ALGORITHMS	COURSE CODE: DSA521S		
1			
DATE: NOVEMBER 2024	PAPER: THEORY		
DURATION: 2 HOURS	MARKS: 100		

FIRST OPPORTUNITY EXAMINATION QUESTION PAPER				
EXAMINER	MR S. TJIRASO			
	MR N. INDONGO			
	MS N. IITUMBA			
	MR R. KAVIMAKA			
	MR I. KANDJABANGA			
MODERATOR:	MRS S. CHIVUNO-KURIA			

INSTRUCTIONS		
1.	Answer ALL the questions.	
2.	Read all the questions carefully before answering.	
3.	Number the answers clearly.	

THIS QUESTION PAPER CONSISTS OF 12 PAGES (Including this front page)

PERMISSIBLE MATERIALS

1. NON-PRGRAMMABLE CALCULATOR

SECTION A: Multiple Choice Questions [20 Marks]

Answer all the questions in the booklet provided.

The section consists of 10 problems (A1-A10).

Problem A1

Given a list of elements; 8,12,6,16,30 inserted into a data structure in that order. An element is deleted using a basic data structure operation. If the deleted element is 30, the data structure cannot be a?

[4 Marks]

- A. Tree
- B. Queue
- C. Graph
- D. None of the above

Problem A2

Study the code fragment below and answer the question that follows.

```
FOR (i = 1; i < n; i++)
    temp =35
    temp = array[i]
    j = i - 1
WHILE (j >= 0 AND array[j] > temp)
    array[j + 1] = array[j]
    j = j - 1
ENDWHILE
    array [j + 1] = temp
ENDFOR
```

Which	of the	following	statement(s)	is true	about the	code	fragment'	7
VVIIICII	OI CITC	TOTIONVILLE	state ments	13 ti uc	about the	. couc	Hughitelle	٠

[2 Marks]

Statement A: Code fragment has the worst-case time complexity of O(n).

Statement B: Code fragment is a pseudocode for a searching algorithm.

- A. Statement A is true, and Statement B is false.
- B. Statement A is false, and statement B is true.
- C. Both Statement A and Statement B are true.
- D. Both Statement A and Statement B are false.

Problem A3

Which one of the following cannot be used for sorting?

[2 Marks]

- A. Selection Sort
- B. Merge sort
- C. Insertion Sort
- D. Binary Sort

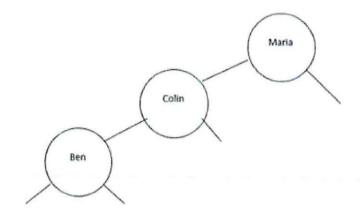
Problem A4

A binary search tree is constructed by inserting the following elements in order: 60, 25, 72, 15, 30, 68, 100, 13, 18, 47, 70. How many number of right subtree nodes does the tree have? [2 Marks]

- A. 3
- B. 5
- C. 7
- D. 6
- E. 4
- F. None of the above

Problem A5

Which one of the following is the worst-case time complexity of selection sort algorithm?


[2 Marks]

A. O(1)

- B. O(n)
- C. O(n2)
- D. O(log n)
- E. O(n log n)
- F. O(n3)
- G. None of the above

Problem A6

Study the BST below and answer the question that follows.

If we compute; $2^h - 1$: where **h** is "height", what are we computing or trying to find out?

[2 Marks]

- A. 3
- B. Minimum number of nodes in tree
- C. 2
- D. Minimum number of internal nodes in tree
- E. Maximum number of nodes in tree
- F. 4
- G. Minimum height
- H. Invalid computation
- I. Maximum number of leaf nodes in tree

		K.	Maximum height		
		L.	Minimum number of leaf nodes in tree		
	Proble	m A7			
	The op	eration f	for visiting each node in a tree data structure is known as [2 M	arks]	
		A. ins	serting		
	B. Merging				
C. Sorting					
			aversal		
		E. no	one of the above		
	Proble	m A8			
	Which traversal algorithm is satisfying the following order? [2 Marks]				
	1 - Go left and perform x				
	2 - Perform an action on current node				
	3	- Go rig	ght and perform x		
	HINT:	k is the n	name of the traversal being performed		
		A.	PostOrder		
		В.	PreOrder		
		C.	InOrder		
		D.	None of the above		

Maximum number of internal nodes in tree

J.

Problem A9

Which of the following statement(s) is true?

[2 Marks]

Statement A: Enqueue operation is concerned with adding an element to a queue data structure.

Statement B: Dequeue operation is concerned with searching for an element in a queue data structure.

- A. Statement A is true, and Statement B is false.
- B. Statement A is false, and statement B is true.
- C. Both Statement A and Statement B are true.
- D. Both Statement A and Statement B are false.

Problem A10

Which of the following statement(s) is true?

[2 Marks]

Statement A: Selection sort algorithm has a worst-case time complexity of O(n2).

Statement B: Selection sort algorithm has a best-case time complexity of O(n²).

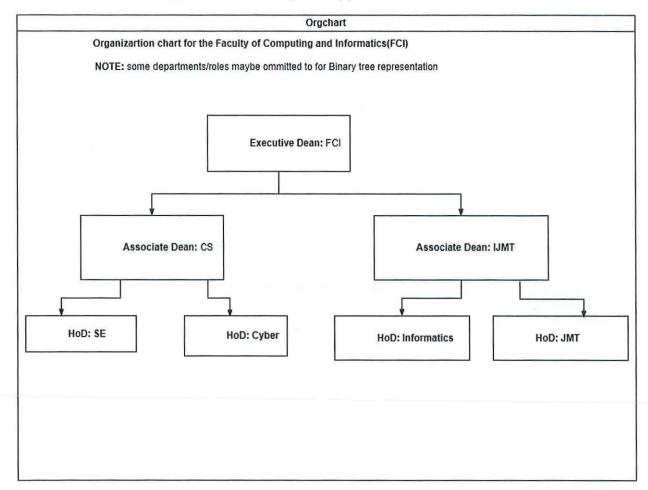
- A. Statement A is true, and Statement B is false.
- B. Statement A is false, and statement B is true.
- C. Both Statement A and Statement B are true.
- D. Both Statement A and Statement B are false.

SECTION B: True and False Questions [20 Marks]				
Answer all the questions in the booklet provided.				
The section consists of 7 problems (B1-B7).				
Problem B1				
Stack is an abstract data type where data are inserted from both ends provided that the isEmpty() function is declared first and checked. [2 Marks]				
A. True				
B. False				
Problem B2				
Selection sort algorithm has best and worst-case time complexity of $O(n^2)$. [2 Marks]				
A. True				
B. False				
Problem B3				
In a linked list, insertion can be done at the End, Middle but not at the beginning of the list. [2 Marks]				
A. True				
B. False				
Problem B4				
When we insert data into a queue with data already in it, the only pointer that needs to be updated is the rear pointer, which is set to point to the new node. [2 Marks]				
A. True				
B. False				
Problem B5				
The inorder traversal processes the left subtree first, then the root, and finally the right subtree. [2 Marks]				
A. True				

B. False

Problem B6

The postorder traversal processes the left subtree first, then the root, and finally the right subtree.


A. True

[2 Marks]

B. False

Problem B7

Consider the structure below and answer the question(s) that follows.

(a) The preorder predecessor of HoD: SE in this binary tree is Executive Dean: FCI.

[2 Marks]

- A. True
- B. False

(b) The Inorder successor of HoD: Informatics is Associate Dean: IJMT.

[2 Marks]

A. IIue	
B. False	
(c) The height of the node; HoD: JMT is two(2).	[2 Marks]
A. True	
B. False	
(d) The height of the this binary tree is two(2).	[2 Marks]
A. True	
B. False	

,

SECTION C: Structured Questions

[60 Marks]

Answer all the questions in the booklet provided.

The section consists of 9 problems (C1-C9).

Problem C1

(a) Given the array {6, 8, 17, 20, 23, 27, 37, 51, 57, 73, 89} Write the pseudocode for the

binary search algorithm to search for the key=51.

[8 Marks]

(b) How many elements will Binary Search need to check to find the key=27?

[4 Marks]

(c) How many elements will Linear Search need to check to find the key 27?

[3 Marks]

(d) Discuss what will happen if you binary search the **key=51** in the array {20, 57, 6, 37, 73, 89, 23, 51,17,8,27,73}

Problem C2

Suppose that a selection sort of 500 items has completed 100 iterations/passes of the main(outer) loop. How many items are now guaranteed to be in their final spot (never to be moved again)? [2 Marks]

Problem C3

Here is an array of ten integers: 5, 3, 8, 9, 1, 7, 0, 2, 6, 4

- (a) Draw this array after the FIRST iteration of the main(outer) loop in a selection sort (sorting from smallest to largest).[3 Marks]
- (b) Draw this array after the **FIRST** iteration of the main(outer) loop in an insertion sort (**sorting from smallest to largest**). This iteration has shifted at least one item in the array! [3 Marks]

Problem C4

Describe a case where insertion sort algorithm will exhibit linear time O(n) in the best-case scenario.

Hint: when the inner loop never executes or may execute once for example.

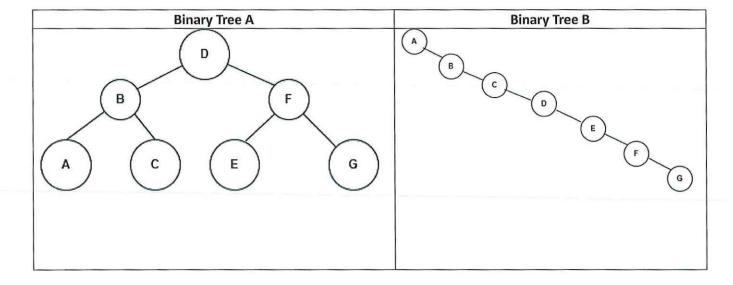
[2 Marks]

Problem C5

Here is an array which has just been partitioned by the first step of quicksort:

[4 Marks]

3, 0, 2, 4, 5, 8, 7, 6, 9


Which of these elements could be the pivot? (There may be more than one possibility!)

Problem C6

Briefly describe binary and linear search algorithms with respect to how they work given the following array and searckKey; array={2,3,7,11,14,18,23,27} and searckKey=90. One of the key descriptions should be about their respective worst-case time complexity or their asymptotic behavior. [10 marks]

Problem C7

Study the tree data structure below and answer the following questions.

- (a) Briefly discuss the height of each of the two (2) structures and how it affects a search operation. [4 Marks]
- (b) What will be the preorder, inorder and postorder traversal output for Binary Tree A? [6 Marks]
- (c) Which node is an inorder successor of node D in Binary Tree A? [2 Marks]

Problem C8

A binary search tree is constructed by inserting the following elements in order: 60, 25, 72, 15, 30, 68, 100, 13, 18, 47, 70. How many numbers of left subtree nodes will the resulting tree have? [2 Marks]

Problem C9

```
Consider the function below and fill in the missing code fragments.
                                                                           [3 Marks]
quickSort(array, start, end) {
IF (start < end) {
    pivot = start
    i = start
   j = end
WHILE(i < j){
  WHILE (array[i] <= array[pivot] && i < end)
    i = i + 1
WHILE (array[j] > .....)
   j = j - 1
IF (i < j) {
    temp = .....
     array[i] = array[j]
       array[j] = temp }
}
  temp = array[pivot]
  array[pivot] = array[j]
  array[j] = temp
  quickSort(array, start, j+1)
  quickSort(array, ...., end) }
}
```

SECTION A: Multiple Choice Questions [20 Marks]

Answer all the questions in the booklet provided.

The section consists of 10 problems (A1-A10).

Problem A1

Given a list of elements; 8,12,6,16,30 inserted into a data structure in that order. An element is deleted using a basic data structure operation. If the deleted element is 30, the data structure cannot be a?

[4 Marks]

- A. Tree
- B. Queue
- C. Graph
- D. None of the above

Problem A2

ENDFOR

Study the code fragment below and answer the question that follows.

```
FOR (i = 1; i < n; i++)
    temp = 35
    temp = array[i]
    j = i - 1

WHILE (j >= 0 AND array[j] > temp)
    array[j + 1] = array[j]
    j = j - 1

ENDWHILE
    array [j + 1] = temp
```