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Part I: True or false questions. 

For each of the following questions, state whether it is true or false. Justify your answer. 

1. The map T : IR3 -+ IR2, defined by T(x,y,z) = (x + y +2, y + z) is not a linear transfor-
mation. (3) 

2. If A and B are similar matrices then there exists an invertible matrix P such that AP = 
BP. (3) 

3. For an n x n matrix A, the geometric multiplicity of each eigenvalue of A is less than or 
equal to the algebraic multiplicity. (3) 

4. The index and signature of the quadratic form 

q(x, y, z) = 3x2 - 4xy + 6y 2 + 4yz - 7z2 are respectively 3 and 2. (3) 

5. If q is a quadratic form on a vector space V, then q(-0:) = -q(0:). (3) 

Part II: Work out problems. 

1. Let V and Vv be vector spaces over a field K and let T: V -+ W be a mapping. State 
what it means to say T is linear transformation. (3) 

2. Let T be the mapping T: P3 -+ P2 defined by T(a 0 + a1x + a2x2 + a3x3 ) = 2a 1 - a2x 3 . 

Then 

(a) show that T is linear. (12) 
(b) find a basis for the kernel of T. (7) 

3. Let V be the vector space of functions with basis S = { sin 2t, cos 2t, e- 3l} and let 
D: V -+ V be the differential operator defined by D f(t) = ftf(t). Find the matrix 
representing D in the basis S. (8) 

4. Let A and B be n x n similar matrices.Then prove that A and B have the same deter-
minant. 

5. Consider the bases B = {(1,0,0),(0,1,0),(0,0,1)} and C = {(1,0,1),(0,1,1),(1,1,0)} 
of IR3. 

(a) Find the change of basis matrix Pc.-6 from B to C. 
(b) Use the result in (a) and to compute [v]c where v = (1, 3, 5). 

G 
0 

D 6. (a) Show that >.. = 4 is an eigenvalue of the matrix A= 2 and find an eigen-
0 

vector corresponding to this eigenvalue. 

Show that v - ( 1) is an eigenvector for the matrix A - G 
0 

~2) and find (b) 1 
0 

the corresponding eigenvalue of A. 

(6) 

(10) 
(5) 

(17) 

(6) 



7. (a) Consider the bilinear form f on R2 defined by f((x 1 , y1), (x2, yz)) = 2x1x2 - 3x1y2 + 
4y1y2 . Find the matrix A off relative to the basis B = { (1, 1), (-2, 1) }. (6) 

(b) Show that q(x, y) = x2 + 2xy + y2 is a quadratic form on R2 . (5) 

END OF SECOND OPPORTUNITY /SUPPLEMENTARY EXAMINATION 
QUESTION PAPER 

2 


