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QUESTION 1 [21] 

1.1. Let T: Mnn IR be a mapping defined by T(A) = tr(A). Determine whether Tis linear 
or not where Mnn is the set of all n x n matrices. [12] 

1.2. Let f: IR3 IR2 be a mapping defined by f(x, y, z) = ( x + z, y - z, -vz ). Determine 

whether f is linear or not. [9] 

QUESTION 2 (9) 

Find the coordinate vector [p(x)h of p(x) = 2 - x + x2 with respect to the ordered basis 

'B ={l+x, l+x 2 , x+x 2 } of P2 • [9] 

QUESTION 3 (23) 

(
X1) (X1 + 2Xz - X3) 

Let T: JR3 IR3 be mapping defined by T Xz = x2 + x3 . 
X3 X1 + Xz - 2x3 

3.1. Find the standard matrix for T and use it to determine T(x) where x = (JJ. [8] 

3.2. Find a basis and the dimension of the image of T. Use rank-nullity theorem to 
determine the nullity of T and use it to determine whether Tis singular or nonsingular. [15] 

QUESTION 4 (12) 

4.1. Let A = G ~] and B = [i _ ~]. Show that A and Bare not similar. [4] 

4.2. If A is an eigenvalue of an invertible matrix A with corresponding eigenvector x, then 

show that An is an eigenvalue of An with corresponding eigenvector x. [8] 

QUESTION 5 (7) 

Consider the following two bases of IR3 : S = {e1 , e2, e3 } = {(1,0,0), (0,1,0), (0,0,1)} and 

E = {vi, v2 , v3 } = {(1,1,0), (0,1,1), (1,2,2)}. Find the change of basis matrix from S to E, 
PE<-S· [7] 
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QUESTION 6 (28] 

1 
0 
1 

6.1. Determine the eigenvalues and the corresponding eigenvectors of A. [25] 

6.2. Is matrix A diagonalizable? If it is, find an invertible matrix P that diagonalizes A. [3] 
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